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Polyene natural products display an impressive array of important
biological activities.1 Polyunsaturated molecules have also dem-
onstrated significant utility in complex molecule synthesis because
they can be used in cascade reactions for the rapid buildup of
molecular complexity.2 They are ideally suited for pericyclic,
radical, cationic, and transition-metal-mediated polycyclizations.
Therefore, new methods for the synthesis of functionalized,
stereodefined polyenes are of great value. We report a new method
for the stereoselective synthesis of Z-R,�,γ,δ-unsaturated amides,
based on a pericyclic cascade rearrangement that was discovered
serendipitously during our investigations into the chemistry of
Zincke aldehydes. This particular polyunsaturated motif is fre-
quently encountered in important, biologically active molecules.3

The ring-opening reaction of pyridinium salts dates back over a
century to the pioneering work of Zincke and König.4 Activation
of pyridines as their pyridinium salts (1, Figure 1), followed by
treatment with primary amines, leads to the formation of new
pyridinium salts (2), while the use of secondary amines cleanly
affords the products of ring opening.5 Frequently, the ring-opened
5-amino-2,4-pentadienal products (3), now known as Zincke
aldehydes, can be obtained in high yield and purity, and in large
quantities, without chromatographic purification. Both the ring-
opening process and the products appear ideally suited for manifold
applications in synthesis; to date, however, this potential has
remained largely unrealized.6,7

In the course of a projected alkaloid synthesis, we attempted
the intramolecular Diels-Alder reaction of tetrahydro-�-carboline-
derived Zincke aldehyde 4 (Scheme 1).8 Warming this polyunsatu-
rated precursor to 160 °C for 16 h did not afford cycloaddition
product; rather, clean but partial conversion occurred to yield a
product in which the Zincke aldehyde portion had been transformed;
the prospective dienophile was unchanged. The product was
Z-R,�,γ,δ-unsaturated amide 5, an isomer of the starting material,
which appeared to derive from an internal redox process. We next
performed this thermal reaction on the simple Zincke aldehyde
derived from pyridine and dimethylamine (6); Z-diene 7 was the
sole product.

We reasoned that two different pericyclic cascade reactions could
account for our observations with 6; a substituted Zincke aldehyde
substrate would be required to distinguish between them. 3-Picoline-
derived substrate 8 served this purpose. A thermally instigated E
to Z isomerization of the C2-C3 double bond of 8 might enable a
6-π electrocyclic ring closure of 11 to pyran 12. A [1,5]-H shift
would afford the isomeric pyran 13, which could undergo an
electrocyclic ring-opening reaction to deliver product 9; the cyclic
nature of the pyran intermediates would account for the Z geometry
of the product. Alternatively, a sequence proceeding via dihydro-
pyridinium intermediates 14, 15, and 16 would lead to 10, an isomer
of 9.9 Heating of 8 led exclusively to 10, which bears the methyl
group R to the carbonyl carbon; isomeric amide 9 was not observed.
Therefore, the reaction appears to involve transposition of the amino

group from one end of the carbon chain to the other, rather than
oxygen transposition. To the best of our knowledge, in the century
since pyridinium salt ring openings to form Zincke aldehydes were
discovered, no such rearrangement has been reported.10,11

The results shown in Table 1 demonstrate that this rearrangement
is general with respect to the amine and the substitution patterns
on the Zincke aldehyde substrates.12 Heating the substrates at
200-220 °C in o-dichlorobenzene under microwave irradiation
cleanly converted each into R,�,γ,δ-unsaturated amides. Excellent
Z-selectivity is observed in all cases except with some Zincke
aldehydes derived from unsubstituted pyridines; in these cases (see
7 and 17), the formation of the E isomer increases with prolonged
heating.13 The depressed yield of 7 reflects loss of this relatively
volatile compound during the removal of the high boiling reaction
solvent. The formation of trisubstituted alkenes (10 and 19-22)

Figure 1. Aminolysis of pyridinium salts. A ) activating group.

Scheme 1. Attempted Intramolecular Diels-Alder Cycloaddition of
4 Yielded Unexpected Rearrangement Product 5. Two Reasonable
Pericyclic Cascade Mechanisms Were Evaluated.
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proceeds smoothly and with excellent stereocontrol. With C3-
substituted Zincke aldehydes (R2 * H), an interesting case of
stereoconvergence occurs; these aminodienal substrates are gener-
ated as thermodynamic mixtures of geometrical isomers about their
trisubstituted alkenes (ca. 3:1), and this mixture is rearranged to
the Z-products with selectivities of g10:1.14 The smooth formation
of morpholino amide 20 is noteworthy due to the known ability of
these amides to serve as effective acyl transfer substrates.15

Although more studies are needed, preliminary experiments have
shown that rearrangement rates are increased with the addition of
small amounts of camphorsulfonic acid, suggesting that catalysis
might result in milder conditions for this novel reaction.

The utility of the products can be demonstrated by selective
manipulation of either terminus of representative product 10.
Preliminary results include the reduction of the amide to alcohol
2316 and selective alkene cross-metathesis17 to afford Z,E-diene
24 (Scheme 2) in moderate, but unoptimized yields.

We have uncovered a new rearrangement of donor-acceptor
dienes known as Zincke aldehydes, which originate in two simple
steps from inexpensive pyridines. While we have not yet studied
the mechanism of the reaction in detail, it is consistent with a
multistep pericyclic process; this reaction might serve as the
prototype of a new type of rearrangement process of donor-acceptor
dienes. The high kinetic selectivity for Z-dienamides is a conse-
quence of the presumed mechanism of the rearrangement and
engenders great potential utility to this interesting transformation.
Facile and stereoselective access to Z-trisubstituted alkenes with
two different substitution patterns demonstrates the versatility of
the method. Further studies on the scope and mechanism, as well
as applications in natural product synthesis, will be reported in due
course.
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Table 1. Synthesis of Z-R,�,γ,δ-Unsaturated Amides by Thermal
Rearrangement of Zincke Aldehydes

a See Supporting Information for reaction times and temperatures. b A
9:1 crude mixture of Z:E isomers, yield refers to purified Z isomer. c Z:E
isomer ratio; except for 7, ratio is unchanged after purification.

Scheme 2. Selective Manipulation of Amide 10

J. AM. CHEM. SOC. 9 VOL. 130, NO. 24, 2008 7561

C O M M U N I C A T I O N S

http://pubs.acs.org/action/showImage?doi=10.1021/ja8028125&iName=master.img-002.png&w=161&h=151
http://pubs.acs.org/action/showImage?doi=10.1021/ja8028125&iName=master.img-003.png&w=164&h=76

